
1Eb.I- TRANSACTIONS ON SOFTWAKh b-hGINFERING, VOL. 14. NO. 8. AUGUST 1988

Delay -Independent Design for Distributed S y s terns
1229

Abstract-Methods for limiting the impact of communication delays
on the logical behavior of distributed systems are considered. It is as-
sumed that a distributed system is described in terms of a number of
interconnected modules, and each module is described in terms of its
possible states and the possible state transitions. Transitions may be
initiated spontaneously by a module and may give rise to output mes-
sages, which will be received, after some possible time delay, by an-
other module as an input. Otherwise, transitions may be initiated by
received input. If the system has the property called regularity, its he-
havior is logically independent of the communication delays. A simple
condition for regularity is given. This condition is the basis for the
iniplementation of counter-based synchronization conditions in a dis-
tributed environment. Weaker forms of regularity, which make ab-
straction of internal operations invisible from the point of view of an
outside observer, are also considered. The application of these con-
cepts to the design of module interfaces involving “collisions” and to
communication protocols including timeouts is discussed in some detail
with examples.

I . INTRODUCTION
ISTRIBUTED systems can be considered a particular D class of parallel systems where several distinct phys-

ical system components operate in parallel and largely in-
dependently of one another. Certain approaches to the de-
scription of parallelism which have been developed for
single and multiprocessor computer operating systems are
not very suitable for distributed computer systems be-
cause they are based on the notion of shared memory,
which is not readily available in a distributed system. In-
stead, approaches using the concept of message exchange
seem to be more appropriate. Although many distributed
computer systems have been built in the past, the design
of such systems is still more an art than a science, and
few methods which help in mastering the design com-
plexities of distributed systems are known. This paper
tries to give some answers to these problems.

A basic mode of synchronization in the case of shared
resources is the enforcement of mutual exclusion between
the use of the resource by different processes. Unfortu-
nately, the realization of this simple concept in a distrib-
uted and unreliable environment may become quite com-
plicated 11 71, [23]. More sophisticated sharing involves
interleaved operations by different processes using the
same resource. In particular, the problems of simulta-
neous access by several users to shared distributed data-
bases have been studied extensively [2] (interleaved ac-
cess is essential for obtaining efficiency in a distributed

M a n u ~ r i p t received April 29. 1983; revised J u l y 31, 1985.
The author is with the DCpartement d’lnfomatique et de Recherche Op-

IEEE Log Number 8822026.
Crationnelle, Universite de Montreal, Montreal, P.Q., H3C 357 Canada.

context). The interactions usually have to satisfy “seri-
alizability,” which means that the result of any inter-
leaved execution of any set of operations must be equiv-
alent to some serial sequence of successive executions of
these operations. A general condition sufficient for seri-
alizability is described by Eswaran et al. [101. Applied to
systems written in terms of processes and monitors, this
approach gives rise to conditions which, when satisfied
by a program consisting of a certain number of processes
and monitors, prove that all possible interleaved execu-
tions by the processes in the program are serializable, i.e.,
equivalent to some execution sequence involving the pro-
cesses, one after the other [11. If it is known that a pro-
gram satisfies these conditions, it is sufficient to consider
only sequential (noninterleaved) execution sequences for
the verificatim of the program, which represents a great
simplification. Similarly, regular systems [4] (see also
Section 111) are relatively simple to verify because only
execution sequences not involving any transmission de-
lays need to be considered.

Cooperation between several distributed and parallel
executing system modules is naturally described by the
exchange of messages. Over distance, this involves trans-
mission delays between the sending and receiving of mes-
sages. While these delays may be determined with respect
to the real time supposed to be universally known, another
approach makes abstraction from the real-time properties
of the system. This approach concentrates on the ordering
between the events in the different system modules, im-
posed by the fact that the sending of a message always
precedes its reception [161. Sometimes this ordering re-
sults in a distributed “logical time,” which may be re-
corded by sequence [20] or by time stamps.

In Section I1 of this paper, a descriptive model for dis-
tributed systems is presented. It is based on the concepts
of modules which are interconnected by channels over
which the modules may exchange messages for commu-
nication between one another. The behavior of each mod-
ule is described in terms of its possible states and state
transitions. The remaining part of the paper concentrates
on the questions related to the influence of the commu-
nication delays on the system behavior. Although these
delays clearly have an influence on the performance prop-
erties of the system, it is pointed out that under certain
circumstances these delays have no influence on the log-
ical system properties, that is, on the possible execution
sequences that can be realized by the system.

The concept of regularity [4] is explained in Section 111,
and some applications in different contexts are discussed

0098-5589/88/0800- 1229$0 1 .OO 0 1988 IEEE

1230 IEEE 7RAKS.ACTIONS O N SOFTWARE ENGINEERING. VOL. 14. NO. 8. AUGUST 1988

in the following sections. Section IV considers the spec-
ification of module synchronization based on counters. A
straightforward implementation of these synchronization
primitives in a distributed environment is given, and con-
ditions for its applicability are discussed. Section V deals
with the definition of an externally visible behavior of a
distributed system and various weaker system properties,
including ‘ ‘serializability . ” These concepts are demon-
strated by two examples: an interface between two mod-
ules with “collisions” and a retransmission protocol. The
latter example also indicates how such problems as mes-
sage loss and timeout operations can be logically inte-
grated into the system design.

11. THE DESCRIPTIVE MODEL

The language in which a system is described has a
strong influence on the understandability of the descrip-
tion and the ease by which it can be used for design val-
idation and implementation. In this paper, we consider a
model of a system consisting of a number of modules,
where each module is described as a state transition ma-
chine, similar to that in [14] and extended to allow for
interactions between modules by the exchange of mes-
sages (see, for instance, [15]). The modules are intercon-
nected by a number of channels in a static structure.

A . Specijication of a Single Module
The externally visible behavior of a module is defined

by its input and output interactions over the channels by
which the module is connected with the other modules
within the system and the order in which these interac-
tions may take place. For each channel, a number of input
and output interaction types are distinguished, and each
type of interaction may be further characterized by param-
eters, the values of which must be determined by the mod-
ule that initiates the interaction as an output. The order in
which a given module may execute input and output in-
teractions is specified in terms of a state transition model,
as described below.

The state of the module is characterized by the values
of a set of module variables. The behavior of the system
is characterized by a set of operations (sometimes called
“transition types” or simply “transitions”). Each oper-
ation defines a set of possible state transitions. An oper-
ation is defined by its enabling predicate, which is a Bool-
ean function of the variables, and its action, which updates
the variables and may generate output interactions. Only
when the enabling predicate is true may the operation be
fired; i.e., the associated action is executed, thus per-
forming a state transition.

Two kinds of operations are distinguished: 1) sponta-
neous operations and 2) operations on input. Spontaneous
operations may be fired when the enabling predicate is
true (which depends only on the present state of the mod-
ule in question). A spontaneous operation may or may not
generate output interactions over the channels connected
to the module. It is assumed that the output of an opera-

tion is generated after the state variables of the module
have been updated by the operation.

An operation on input is associated with a particular
type of input interaction and the channel over which that
input may occur. The operation may be fired when an in-
put of that type is ready at the channel in question and the
enabling predicate is true. For simplicity, we assume that
an operation on input does not produce output. In addi-
tion, we assume that whenever an input is ready there is
at least one enabled operation on input associated with
that type of input. In a given module state, several differ-
ent operations may be simultaneously enabled, i.e., ready
for execution, but only one of them will be selected for
execution. Mutual exclusion is assumed between the fir-
ing of operations.

This descriptive model is very powerful. It may be used
to express the basic control structures for sequential, con-
ditional, and repetitive execution, including nondetermin-
istic guarded commands [8]. As shown in the example of
Fig. l(a), some of the variables may be used to record the
progress of execution. These variables are sometimes
called “place” or “major state” variables because their
function may be graphically represented by “places” or
“states” in a state diagram, as shown in Fig. l(b). An
operation is written in the form “provided <enabling
predicate > begin <action > end ” or “when < input >
provided < enabling predicate > begin < action > end”,
respectively, similarly to the notation of [9]. The variable
declarations, as well as the enabling predicates and ac-
tions of operations, are expressed by elements of the Pas-
cal programming languages.

B. A System of Interconnected Modules

As mentioned above, a system consists of a number of
modules defined as state transition machines, as described
above, which are connected with one another through
channels. A channel has the property that an output inter-
action generated by the module at one end will be pre-
sented as input to the module at the other end of the chan-
nel. Different channel properties may be assumed, such
as reliable FIFO delivery, FIFO with possible losses, or
channels that do not necessarily preserve the order of the
interactions. Unless otherwise mentioned, we assume in
the following the reliable FIFO case.

Sometimes a situation is considered where the “sys-
tem” interacts through “external” channels with its “en-
vironment.” Such a situation can be modeled by having
the “system” connected by the “external” channels with
dummy “environment modules,” which absorb the out-
puts from the “system” and may generate arbitrary input
interactions for the “system” through spontaneous oper-
ations, which may be executed in arbitrary order.

For the analysis of the behavior of a system as specified
above, we use in the following the notion of a truce. A
trace is the history of some possible execution of the sys-
tem in terms of the sequences of operations that have been
executed by the different modules of the system. For sim-

BOCHMANN DELAY-INDEPENDENT DESIGN 1231

according to the state of the system and the specifications
of the different modules.

2) We consider delayless execution, where no other
operation may occur (within the entire system) between a
spontaneous operation generating one or more output in-
teractions and the operations on input consuming the gen-
erated interactions. This mode of execution is considered
in [21] and is similar to the rendezvous interactions de-
fined in [121 and [22]. It is also related to serial schedules,
as considered in the analysis of protocols for distributed
database updates [2], [lo] .

p r o v i d e o s t s r e - i n l c l a l

beg in o u c p u t e s t a b l i s h - connectLon; state := open ena:

p r o v l c e d 5 c a t e = o a e n

beg in b u f f e r := , . _ [p r o d u c e new message) ; s t a t e := re i lcv ? n c :

p r o v i d e d s ta te -rcad i We use the following notation. If S is a state of the
system, characterized by the state of each module and the
interactions generated and not yet consumed in the differ-
ent channels, and T i s a trace, i.e., a sequence of opera-
tions, then we say (S) T is dejined when T is a possible
execution sequence for the system starting in the state S.

beg in a u c p u t irnd-diti(huttL~), tit^ - 0 1) t n i n d .

p r o v i d e d s t a t e = reaay

beg in { a b o r t) s t a t e - done end,

(a)

U-

connect 1 on connect ion

t

abort

(b)
Fig. 1 . (a) Example of a module specification. (b) Corresponding finite

state digram.

plicity, we assume that some fictitious observer may put
the operations of all modules into a global order. (Local
and global observers are considered in [6].) In practice,
however, only those partial orders are relevant which de-
termine either the order of execution of the operations of
a single module (as determined by that module) or the
causalhemporal relation between the generation of some
output by one module and the consumption of that inter-
action during an operation on input by another module
1163.

111. REGULARITY
The basic question addressed in this paper is the pos-

sible influence of message-passing delay on the behavior
of a distributed system. More precisely, we are interested
in whether the logical behavior of a system defined in the
formalism defined above depends on the delays between
the generation of output by one module and the consump-
tion of that interaction by another module during the ex-
ecution of an operation on input. For this purpose, we
consider two modes of execution for a given system.

1) We consider “normal” execution, where arbitrary
delays may occur between the generation of an interaction
and its consumption by the inputting module; between the
operation generating the interaction and the operation (by
another module) consuming the interaction, other opera-
tions may occur, in an arbitrary order as far as possible

We say that ‘‘TI is the delayless trace corresponding to
T” if T’ is a delayless trace and contains the same spon-
taneous operations as T and they occur in T’ in the same
relative order, as seen by each module, as in T. We say
that a (general) trace is complere if all the input interac-
tions consumed by operations on input within T are ex-
actly those interactions generated as output (previously)
by the spontaneous operations of T. A complete trace
should therefore start and end in a system state with no
interactions in the channels.

Dejnition: We say that two system states S , and S2 are
equivalent if they allow for the same execution traces,
i.e., if (S ,) T i s defined iff (S ,) Tis defined, for any T.

We assume in the following that the action of each op-
eration (taken individually) is deterministic. Then
“(S) T” represents a new system state which is attained
by the system from the state S after the execution of the
operation sequence T.

DcIfinitiotz: We say that a system with initial state So is
regulur if, for any cotnplcte trace T such that (S o) T is
defined, the following conditions hold:

I) (So) T’ is also defined and
2) (S o) T‘ is a state equiizalent to (S ,)) T

where T‘ is the delnyless trace corresponding to T.
The condition 1) implies that each sequence of spon-

taneous operations which is possible in the presence of
arbitrary, but finite, message-passing delays is also pos-
sible in the absence of delays. Therefore, delays cannot
introduce any “new” system behavior. On the other hand,
condition 2) implies that all sequences of spontaneous op-
erations that are possible in the absence of delays are also
possible in the presence of delays. Therefore, the dead-
lock and liveness properties of the system are independent
of the delays.

We can conclude that the verification and analysis of a
distributed system are simplified if it is known that the
system is regular. For studying its possible behaviors, in-
cluding deadlock and liveness properties, one may ignore

1234 IEEE TRANSACTIONS ON SOFTWARE E N G I N E E R I N G . VOL 13. NO. X. A U G U S l I Y X X

C. Regularity
We say that a counter relation, used in the authorization

condition for a procedure of a given module, has regular
coeficients if for each involved (copy) counter variable x ,
of a procedure associated with a different module, the cor-
responding constant c, is positive. Using the condition for
regularity discussed in Section 111-B, it is then easy to
show that the following proposition holds.

Proposition: If all counter relations of the authoriza-
tion conditions of all procedures of a subsystem have reg-
ular coeficients, then the (synchronization aspect of the)
subsystem is regular.

We note that this result [5] was used by Herman [1 11,
who considers a ring communication structure between
the different modules and describes a method for reini-
tialization after the failure of a module. Very similar con-
straints on authorization conditions are also considered by
Schmid [26] for analyzing the mutual influence of differ-
ent conditional critical regions and their efficient (nondis-
tributed) implementation.

The above proposition may be used to determine in
which way the procedures of a subsystem may be distrib-
uted over several physical components, without changing
the authorization conditions of the procedures, such that
the logical behavior of the subsystem is not affected. For
example, the authorization conditions for a system as de-
fined in Fig. 2 may be written as followb:

condition for the procedure produce:

terminatedc,,,l,llmr - authorizedproduce > - N

condition for the procedure remove:

- > 0

If the two procedures are distributed over two different
modules as explained above, the system remains regular
since the first counter variable of each condition will be a
copy variable, whereas the second will be an original one.

V. WEAKER FORMS OF REGULARITY

As discussed in Section 111, regularity implies strong
constraints on the system behavior. As shown by the ex-
amples discussed below, many useful systems do not sat-
isfy the regularity contraints. However, it is possible to
consider weaker constraints, in the following called ex-
rernal regularity, which still imply a certain delay inde-
pendence of the system behavior, at least as far as the
“externally” visible system behavior is concerned. An
even weaker form of system property is serializability, as
defined for the analysis of distributed database query
management [2].

In order to make the notion of “external visibility”
more precise, we use the concept of projections as defined
in [21]. We suppose that a certain subset P of the opera-
tions defined within the system are “externally visible,”
i.e., only these operations are considered to be relevant

as far as the behavior of the system is concerned, as seen
by its environment. In the case of a distributed database,
these externally visible operations are the read and write
requests, as well as the returned read results. In the case
of the communication protocol considered in Section V-
C and the distributed queue of Fig. 2 , the externally vis-
ible operations are produce and consume. In general,
considering a subsystem representing an abstract data type
[191, the externally visible operations correspond to the
“operations” provided to its users by the abstract data
t Y Pe.

A. Dejinitions

We give in the following some definitions leading to
the notion of “external regularity” which are used in the
discussion of the examples in the Sections V-B and V-C.
We assume in the following that a system is specified
using the model described in Section I1 and that a certain
subset P of the operations of that system are considered
to be relevant for the externally visible behavior of that
system.

Notarion: We write P (T) for the projection of a trace
T o n the subset P of relevant operations; that is, P (T) is
the subsequence of T of those operations of T that are
included in P.

Dejnition: We say that two traces T I and T, are equiv-
alent with respect to P if their projections on P are iden-
tical; i .e . , P (T l) = P (T ,) .

Dejnition: We say that two system states SI and S2 are
equivalent with respect to P if, for any trace TI possible
from state S I (that is, (S I) T I is defined), there is a trace
T, possible from state S, (that is, (S ,) T2 is defined) such
that the two traces are equivalenr with respect to P.

Dejinition: We say that a system is externally regular,
or more precisely, regular with respect to P , if, for each
complete trace T I which is possible in the initial state S
of the system (that is, (S) T I is dejined), there is a delay-
less trace T2 such that

1) T2 is equivalent to T I with respect to P ,
2) Tz is possible in the initial state S of the system (that

3) the final states (S) T , and (S) T2 are equivalent with

Dejnition: We say that a system is serializable with
respect to P if, for each TI as above, there is a delayless
trace T, such that

1) the projections of T I and T, on P contain the same
operations of P , but not necessarily in the same order:
only the relative order between operations in the same
module must be preserved;

is, (S) T2 is dejined), and

respect to P.

2) as above; and
3) as above.
The regularity condition of Section III-B can be gen-

Suficient Condition fo r External Regularity: If for any

1) (S) T’ is also dejned and

eralized to the case of external regularity as follows.

trace T such that (S) T is defined, the conditions

BOCHMANN: DELAY-INDEPENDENT DESIGN 1233

teracting modules must be designed to operate in such an
environment. (An example is given in Section V.)

2) Implementing Channel Flow Control: A sponta-
neous operation generating output may be delayed due to
the slow processing speed of the receiving module.

Channel JEow control may be introduced into a given
system by requiring that each spontaneous operation be
subject to an additional (flow control) enabling predicate
for each output generated. This predicate is true when the
corresponding channel is ready to receive the output in-
teraction. In the extreme case of channels with zero-length
queues, this predicate is true when the receiving module
is not in the process of executing any operation (and
therefore ready to execute an operation taking the gener-
ated output as an input).

An important property of a regular system is the follow-
ing. The logical behavior of such a system is not influ-
enced by the introduction of channel flow control mech-
anisms. This may be shown as follows.

The introduction of a flow control mechanism has no
impact on the possible delayless traces since for the exe-
cution of these traces no message need be stored in the
channels. The only impact of the flow control mechanism
on the system is that certain traces, which involve “too
many” messages in transit, become impossible to realize.
However, such traces lead to system states which are
equivalent to states attained by the corresponding delay-
less trace. Therefore, that logical system behavior, as dis-
cussed in Section 111-A, is not affected by the flow control
mechanism.

IV. DISTRIBUTED SYNCHRONIZATION BASED ON

COUNTERS

A . Counter-Based Synchronization
We assume in this section that the enabling predicates,

which determine when certain operations may be exe-
cuted, depend only on variables which, essentially, count
the number of times an operation is executed. We adopt
in the following the approach of Robert and Verjus [2 5] ,
but our conclusions may also be applied to other similar
approaches 1241, [28].

Following the approach of [2 5] , we suppose that the
synchronization aspect of a subsystem is described sepa-
rately from the processing aspect. The processing aspect
consists of a set of procedures which may be called by
other parts of the system. However, the execution of a
called procedure may be delayed until a certain authori-
zation condition is satisfied. This is the synchronization
aspect, which is handled by what we call the “control
part” of the subsystem. In the nondistributed case [2 5] ,
the control part contains the following three counter
variables associated with each procedure:

requested: the number of requests for an execution
of the procedure since the subsystem initialization;

authorized: the number of executions authorized;
and

terminated: the number of recorded terminations and
procedure executions.

A requested execution of a procedure may be autho-
rized by the control part when the authorization condition
of the procedure is satisfied. This condition depends on
the counter variables. We assume that the condition is a
Boolean expression built out of counter relations which
are tied by the logical operators A N D and OR. Each counter
relation has the form

where the ci(i = , . , n + 1) are constants and the
x , (i = 1 , * * . , n) are particular counter variables. More
details and many examples may be found in the references
mentioned above.

B. Distributed Implementation

A distributed implementation of the synchronization
rules described above may be obtained in the model de-
scribed in Section 11. We suppose that the subsystem con-
sists of several modules, and each procedure of the sub-
system is associated with one of the modules. In this
module, the requests are generated (possibly based on the
information in messages received from other sub-
modules), the decisions for procedure executions are
made, and the execution (i.e., the processing part) of the
procedure is performed. The module also contains the
original counter variables, requested, authorized, and
terminated of the procedure.

With each procedure we associate three spontaneous
operations (in the sense of Section 11) located at the same
module. They represent a procedure request, an authori-
zation for execution, and a termination of an execution,
respectively. The authorization operation has an enabling
predicate, which is the authorization condition of the pro-
cedure and which is evaluated based on local counter
variables. The variables involved may include original
counter variables of procedures (including the procedure
requested) associated with the same module and local copy
counter variables (see below) of procedures associated
with other modules. The actions of the operations consist
of an update of the corresponding original counter vari-
able (increased by one). After the authorization action,
the execution of the procedure is performed, followed by
the execution of the termination operation.

In addition to the original counter variables of local
procedures, each module also maintains so-called copy
variables, which are counter variables for procedures as-
sociated with other modules. The copy variables are up-
dated by operations on input which are activated by mes-
sages that are generated as output by the corresponding
spontaneous operations in the module with which the pro-
cedure is associated. Therefore, the value of a copy
counter variable is always smaller than or equal to the
value of the original.

1234 IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 14, NO. 8, AUGUST 1988

C. Regularity
We say that a counter relation, used in the authorization

condition for a procedure of a given module, has regular
coeficients if for each involved (copy) counter variable xi
of a procedure associated with a different module, the cor-
responding constant ci is positive. Using the condition for
regularity discussed in Section 111-B, it is then easy to
show that the following proposition holds.

Proposition: If all counter relations of the authoriza-
tion conditions of all procedures of a subsystem have reg-
ular coeficients, then the (synchronization aspect of the)
subsystem is regular.

We note that this result [5] was used by Herman [111,
who considers a ring communication structure between
the different modules and describes a method for reini-
tialization after the failure of a module. Very similar con-
straints on authorization conditions are also considered by
Schmid [26] for analyzing the mutual influence of differ-
ent conditional critical regions and their efficient (nondis-
tributed) implementation.

The above proposition may be used to determine in
which way the procedures of a subsystem may be distrib-
uted over several physical components, without changing
the authorization conditions of the procedures, such that
the logical behavior of the subsystem is not affected. For
example, the authorization conditions for a system as de-
fined in Fig. 2 may be written as follows:

condition for the procedure produce:

terminatedconsume - authorizedproduce > - N

condition for the procedure remove:

terminatedproduce - authorizedconsume > 0

If the two procedures are distributed over two different
modules as explained above, the system remains regular
since the first counter variable of each condition will be a
copy variable, whereas the second will be an original one.

V. WEAKER FORMS OF REGULARITY

As discussed in Section 111, regularity implies strong
constraints on the system behavior. As shown by the ex-
amples discussed below, many useful systems do not sat-
isfy the regularity contraints. However, it is possible to
consider weaker constraints, in the following called ex-
ternal regularity, which still imply a certain delay inde-
pendence of the system behavior, at least as far as the
“externally” visible system behavior is concerned. An
even weaker form of system property is serializability, as
defined for the analysis of distributed database query
management [2].

In order to make the notion of “external visibility”
more precise, we use the concept of projections as defined
in [2 I]. We suppose that a certain subset P of the opera-
tions defined within the system are “externally visible,”
i.e., only these operations are considered to be relevant

as far as the behavior of the system is concerned, as seen
by its environment. In the case of a distributed database,
these externally visible operations are the read and write
requests, as well as the returned read results. In the case
of the communication protocol considered in Section V-
C and the distributed queue of Fig. 2, the externally vis-
ible operations are produce and consume. In general,
considering a subsystem representing an abstract data type
[191, the externally visible operations correspond to the
“operations” provided to its users by the abstract data
type-

A . Dejinitions

We give in the following some definitions leading to
the notion of “external regularity” which are used in the
discussion of the examples in the Sections V-B and V-C.
We assume in the following that a system is specified
using the model described in Section I1 and that a certain
subset P of the operations of that system are considered
to be relevant for the externally visible behavior of that
system.

Notation: We write P (T) for the projection of a trace
T o n the subset P of relevant operations; that is, P (T) is
the subsequence of T of those operations of T that are
included in P .

Dejinition: We say that two traces T1 and T2 are equiv-
alent with respect to P if their projections on P are iden-
tical; i.e., P (T l) = P (T 2) .

Dejinition: We say that two system states Sl and S2 are
equivalent with respect to P if, for any trace Tl possible
from state SI (that is, (S1) Tl is defined), there is a trace
T2 possible from state S2 (that is, (S ,) T2 is defined) such
that the two traces are equivalent with respect to P .

Dejinition: We say that a system is externally regular,
or more precisely, regular with respect to P , if, for each
complete trace Tl which is possible in the initial state S
of the system (that is, (S) Tl is dejined), there is a delay-
less trace T2 such that

1) T2 is equivalent to Tl with respect to P ,
2) T2 is possible in the initial state S of .the system (that

3) the final states (S) TI and (S) T2 are equivalent with

Dejinition: We say that a system is serializable with
respect to P if, for each T1 as above, there is a delayless
trace T2 such that

1) the projections of Tl and T2 on P contain the same
operations of P , but not necessarily in the same order:
only the relative order between operations in the same
module must be preserved;

is, (S) T2 is dejined), and

respect to P .

2) as above; and
3) as above.
The regularity condition of Section 111-B can be gen-

Suficient Condition for External Regularity: If for any

1) (S) T’ is also dejined and

eralized to the case of external regularity as follows.

trace T such that (S) T is dejined, the conditions

1235 BOCHMANN: DELAY-INDEPENDENT DESIGN

2) (S) T and (5’) T‘ are states which are equivalenr with

are satisfied then the system is regular with respect to P.

B. Example of an Interface with Queueing Delays
Queueing delays in the interfaces between different

modules within a given system often lead to certain dif-
ficulties. An example of this is the so-called “call colli-
sions” that occur over an X.25 interface between a host
computer and a packet-switched data network node when
the computer and the network node both initiate the es-
tablishment of a virtual circuit at the same time (using the
same logical channel number). If there were no delays,
such collisions would not occur since each side would im-
mediately know when the other side initiated a circuit es-
tablishment. A similar situation is demonstrated by the
example below, and a more complex example is discussed
in [7].

Fig. 3 shows a system consisting of two modules A and
B. The possible operations of the two modules are indi-
cated in the figure by the state transition diagrams in both
modules. The behavior of the system may be character-
ized as follows. In the idle state, each module may make
a request for entering a joint activity X or Y , respectively.
A joint activity requires both modules to be in the same
state “X” or “Y,” respectively. When the joint activity
is terminated, both modules go back to their idle states.
Whether activity X or Y will be chosen depends on which
request is made first.

The behavior may be characterized by the following
CCS expression [2 2] :

respect to P ,

Xor Y = ((enter - X 1 I enter - X) ; (b 1 I leave))
1 (enter - Y 1 I enter - Y) ; (& I 1 leave))
: X o r Y

where ‘ ‘ I 1 ’ ’ indicates “parallel” execution, that is, in
arbitrary order. (The message nature of communication
clearly implies that receiving operation enter - X will be
executed after the sending operation enter - X, etc.) The
path expression includes only the operations
enter - X, enter - Y, enter - X, enter - Y, m,
and leave. These are the operations considered relevant
for the “externally visible” behavior of the system; that
is, they form the subset P.

In the absence of communication delays, there is no
difficulty in determining which request was made first.
Only the transitions drawn as continuous arrows in Fig. 3
will be executed. In the presence of delays, however, both
modules may make the requesting transitions to their re-
spective states wait, and it would not be clear which mod-
ule made the first request. The system specification of Fig.
3 gives priority to the module A ; that is, in the case of
“simultaneous” requests, the module B will follow the
request made by module A (see transitions drawn as dot-
ted arrows).

An analysis of the system of Fig. 3 shows that the sys-
tem is regular with respect to the set of operations P de-

R B
I

enter-V

l eave req-V

Fig. 3 . Example of synchronization over an interface with queueing
(Underlined operation names represent output, and the nonunderlined
represent input.)

fined above. This means that the possible sequences of
executions of the externally visible operations P are the
same in the case of communication delays and in the case
of no delays. It is important to note that one could define
other systems, equivalent to the one of Fig. 3 as far as the
externally visible operations are concerned, which handle
the case of request collision in a different way, for in-
stance, giving module B priority or letting both modules
abandon their requests.

C. A Retransmission Protocol
The system of Fig. 2 may be considered a realization

of the abstract data type of a queue. The subset of exter-
nally visible operations P would consist of produce and
consume. The system of Fig. 2 assumes that the channel
between the two modules realizes a reliable FIFO queue.
Without this assumption, the same externally visible be-
havior of the system may be obtained by introducing some
retransmission protocol between the two modules of the
system. Such a system is shown in Fig. 4. The similarity
between the systems in Figs. 2 and 4 is indicated by using
as much as possible the same names for variables and
transitions in both systems. However, the following im-
portant differences are noted.

1) The retransmission system contains operations to re-
cover from the loss of messages transmitted between the
two modules of the system. To keep the correct sequence
of data blocks, it is necessary to number the data blocks
included in the messages. (Note that similar protocols are
analyzed in [3] and [2 7] . In contrast to the systems of Fig.
2 and [3], sequential message delivery through the com-
munication channel is nor assumed here.)

2) The start-retransmission and send-ack operations
are always enabled. For efficiency reasons, the start-re-
transmission operation should be executed only if, after
the execution of a transmit operation, the number of out-
standing messages is not reduced to zero (by the execu-
tion of an acknowledge operation) after a certain time
period (“timeout”).

An analysis of this system shows that its operations sat-
isfy the regularity condition of Section 111-B, except for
the presence of the operation start-retransmission. In
fact, the operation acknowledge does not move left over

1236 IEEE TRANSACTIONS ON SOFTWARE ENGINEKING. VOL. 14. NO x. mcusr I ~ X X

l e n g t h : O. .N ;
b u f f e r : ar rav 10. .N-11 o f darn;
n e x t : O. .N-1 ; (number o f next d a t a black to be r e c e i v e d from

VS : O. .N-1 : {number of n e x t data b l o c k t o be s e n t }
o u t s t a n d i n g : O..N-1 ; (number o f next d a t a block L O be e c k n o v l e d g e d]

t h e env i ronmen t)

l s n g r h : = l e n g t h + 1 ;
b u i f e r !next : := . . . i p r o d u c r , n e w t m l t l ;
nex f := (next + 1) mod N

end ;

transmit ::

pi-cL3i&.? (VS - o u t s t a n d i n g) mod N < v i n d o v s i z e
a n d VS # n e x t

bey%

VS :- (VS + 1) mod N;
O U t p t transfer (V S , b u f f e r l V S :)

e n c

S t a r t - r e t r a n s r m s s i o n : :

(pi-eviiecd t l m e - o u t) tecin VS : = o u t s t a n d i n g en<;

Receive-ack : wha. acknov ledge (NR : O..N-l)

begin
l e n g t h :- l e n g t h - C (N R - o u t s t a n d i n g) mod N I ;
o u t s t a n d i n g :- N R

enc;

In- t ia L 22

l e n g t h :- VS :- next :- a u r s t a n d i n g :* 0 ;

(a)

va‘a2-:031es

l e n g t h : O..N ;
VR : O..N-1 ; (number o f n e x t d a c a b l o c k t o b e r e c e i v e d)
b u f f e r : q u e u e of d a t a ;
u n i t : d a t a ;

@erazicn;

Cons urn ::
FPCL’”d l e n g t h > 0

begin

l e n g t h : = l e n g t h - 1 ;
b u f f e r . g e t (u n i t) ; . . . [consume d a t a u n i t }

end;

R e c e i v e : : U h l ? t r a n s f e r (NS : O..N-1, r e c e i v e d - u n i t : d a t a)

EegLn if SS = VR

then begin

l e n g t h := l e n g r h + 1 ;
b u f f e r . p u t (r e c e i v e d - u n i t) ;
VR := (VR + 1) mod S

end;

Send-ack :: F i - C V i i C d true

begin outout a c k n o w l e d g e (VR) end;

i n i t i a l ’ !

l e n g t h := VR := 0 ;
b u f f e r . e m p t y ;

(b)

Fig. 4. Producer and consumer modules for a retransmission protocol. (a)
Specification of producer module. (b) Specification of consumer
dule.

start-retransmission since the traces T start-retrans-
mission acknowledge and T acknowledge start-retrans-
mission do not lead, in general, to equivalent module
states. (For instance, a new data block may be acknowl-

edged which is taken into account by the start-retrans-
mission operation in the case of the latter trace, but not
in the case of the former. This results in different values
for the variable VS .) However, the module is regirltir ~ i r h
respect to the subset of operation P = { produce, con-
sume}. In fact, the external regularity condition of Sec-
tion V-A is satisfied by the system. To prove this, it is
sufficient to show that the two traces above lead to module
states equivalent with respect to P. In fact, the state
reached by the second trace is reachable from the state
reached by the first trace through the execution of a suf-
ficient number of transmit and receive operations.

This example also demonstrates the nature of
“timeout” operations, which are usually initiated some
time delay after the execution of an operation for which
some form of acknowledgment is expected. but not re-
ceived. This class of operations often introduces nonre-
gularity, but by the nature of its recovery action, i t should
keep the system externally regular. The operation is usu-
ally introduced into a system in order to prevent the dead-
lock which could result from a “lost message” or a fail-
ure of a subsystem. Problems of logical consistency often
arise if the original acknowledgment arrives when the
timeout operation has already been started. Such prob-
lems may be avoided, as in the example above, if the sys-
tem design is such that the timeout operation may be en-
abled at all times. However, for efficiency considerations,
it is usually necessary to restrict the frequency of execu-
tion for these operations.

VI. CONCLUSIONS

It has been demonstrated that for a regular system the
communication delays have no influence on the logical
behavior of the system. Therefore, the analysis of the be-
havior of a system is simplified if it is known to be reg-
ular. In that case, it is sufficient to analyze the system
assuming no communication delays (which usually makes
the analysis much simpler). Unfortunately. it is not al-
ways easy to determine whether or not a system is regular.
However, an easily verified sufficient condition for regu-
larity is described in Section 111-B. This condition was
applied in Section IV to derive a distributed implemen-
tation of counter-based synchronization conditions.

Although many practical systems are not regular, some
weaker form of regularity can still be applied. The so-
called “external regularity” is based on the externally
visible behavior of the considered subsystem and consti-
tutes an abstraction from certain internal operations of the
subsystem. These considerations give a framework for the
design of module interfaces (including delays) in distrib-
uted systems and for the handling of timeout situations,
as discussed in Section V. Although some sufficient con-
dition for external regularity is given in Section V-A, it
does not always apply. It would be interesting to find more
general regularity conditions and to clarify the relation
with the weaker property of “serializability,” which is
often used in the analysis of distributed database systems.

BOCHMANN: DELAY-INDEPENDENT DESIGN 1237

REFERENCES

[I] E. A. Akkoyunlu. A. J. Bernstein. F. B. Schneider, and A. Silber-
schatz, “Conditions for the equivalence of synchronous and asyn-
chronous systems,’’ IEEE Trans Sofrwarr Eng. , vol. SE-4, pp. 507-
516, Nov. 1978.

121 P. A. Bernstein et a l . , “Concurrency control in a system for distrib-
uted data bases,” ACM Trorzs. Database Syst.. vol. 5 . no. I , Mar.
1980.

[3] G. v . Bochmann. “Logical verification and implementation of pro-
tocols.” i n Pro(. . 4th Dnrtr Commi(fi. S y r ~ i p . (ACM-IEEE), Quebec
City. P.Q., Canada, Oct. 1975. pp. 7-15-7-20: reprinted in Cotri-
uiioiictitiori P r o r o d M o d r l i t i g . C . Sunshine. Ed.

[4] -, “Distributed synchronization and regularity,” Comput. Net-
nvrks, vol. 3 , pp. 36-43, 1979.

IS] -, “Towards an understanding of distributed and parallel sys-
tems,” Dep. d’IRO, Univ. MontrCal, Montreal, P .Q. , Canada, Pub.
#317. 1980.

161 G. v. Bochmann, R. Dssouli. and J . R. Zhao, “Trace analysis for
conformance and arbitration testing.” IEEE Trcrris. Sofi~i~rre E n y . . 10
he published.

171 G. v . Bochmann and A . Finkel, “Impact of queued interaction on
protocol specification and verification.” Dep. Inform. Recherche Op-
Crationnelle, Univ. MontrCal. MontrCal. P .Q. , Canada. Tech. Rep.,
1988.

IS] E. W . Dijkstra. “Guarded commands, nondeterminancy and formal
derivation of programs,” Comr,iuri. ACM. vol. 18. no. 8. pp, 453-
457, Aug. 1975.

[9] “Estelle: A formal description technique based on an extended state
transition model.“ I S 0 Int . Standard 9074. 1987.

[I O] K. P. Eswaran, J . N . Gray. R. A. Lorie, and I . L. Traiger. “The
notions of consistency and predicate locks in a database system.“
Commun. A C M , vol. 19, no. I I . pp. 624-633. Nov. 1976.

[I I] D. Herman, “Controle reparti des synchronisations entre processus.”
IRISA. Rennes, France, 1981. to be published.

I 121 C. A. R. Hoare, “Communicating sequential processes,” Comniun.
A C M , vol. 21. no. 8, pp. 666-677, Aug. 1978.

1131 R. M. Keller, “A fundamental theorem of asynchronous parallel
computation.” in Partillrl Proc.essing, T. Y. Feng, Ed. New York:
Springer-Verlag. 1974, pp. 102-1 12.

[141 -, “Formal verification of parallel programs.” Cotnmun. ACM.
vol. 19, no. 7, pp. 371-384, Ju ly 1976.

[I S] S. S. Lam and A. U . Shankar. “Protocol verification via projec-
tions.” IEEE Tram. Software Eng. . vol. SE-10, July 1984.

[161 L. Lamport. “Time. clocks and the ordering of events in a distributed
hystem,” Commun. A C M . vol. 21. no. 7 , pp. 558-565, Ju ly 1978.

[171 G. LeLann. “Distributed system-Towards a formal approach.‘‘ in
Proc. lFlP Congr. 1977. Amsterdam, The Netherlands: North-Hol-
land, 1977, pp. 155--160.

Artech, 1981.

[I X] R. J . Lipton, “Reduction: A method of proving properties of parallel
programs..“ Cor~imu~. A C M , vol. 18. n o . 12, pp . 717-721. Dec. 1975.

[I91 B. Liskov and S. Zilles, “Specification techniques for data abstrac-
tions.” IEEE Trans. Sofrwarr Eng. . vol. SE- I , pp. 7-18. Mar. 1975.

[20] P. M . Merlin and A . Segall, “A failsafe distributed routing proto-
col,” IEEE Truns. Corrirnun., vol. COM-27, pp. 1280-1287, Sept.
1979.

[21] P. H. Merlin and G. v. Bochmann. “On the construction of sub-
module and communication protocols,” ACM Trtlri.5. Progrrim. Ltirig.

Syst.. vol. 5 . no. I . pp. 1-25. Jan. 1983.
[22] R. Milner. “A calculus of communicating systems.” in Lecture Notes

in Computer Scitwce, N o . 92.
[23] M . Raynal. “Algorithmique du parallklisme: Le problkme de I’exclu-

sion mutuelle.“ DUNOD (in French), 1984, 164 p.
[24] D. P. Reed and R. K . Kanodia, “Synchronization with event count5

and sequencers.” in Proc. Sixth ACM S y n p . OperatinR Sysr. Priw
ciples, Nov. 1977.

[25] P. Robert and J . P. Verjus, “Toward autonomous descriptions of syn-
chronization modules.” in Proc. IFIP ConRr. 1977. Amsterdam,
The Netherlands: North-Holland, 1977. pp. 981-986.

[26] H. A. Schmid, “On the efficient implementation of conditional crit-
ical regions and the construction of monitors,” Acta hjiirrti., vol. 6 ,
pp. 227-249, 1976.

1271 N . V. Stenning, “A data transfer protocol.” Compirt. Nerworkr. vol.
I . pp. 99-110, 1976.

1281 A. J . Gerber, “Process synchronization by counter variables.” AC’M
Opt. S n t . R e i , . . vol. I I . no. 4. pp. 6-17. Oct. 1977.

New York: Springer-Verlag. 1980.

Gregor v . Bochmann (M’82-SM’85) received the
Diploma degree in phy\ic\ from the Universit] of
Munich, Munich, West Germany. in 1968 and the
Ph D degree from McGill Univer\ity, Montreal,
P Q , Canada, in 1971

He has worked in the areas of programming
language\, compiler design, communication pro-
tocol\. and software engineering and hds pub
lished many papers i n theqe area5 He is current15
a ProteTsor in the DCpartement d’lntormatiquc et
de Recherche Operationelle, Universite de Mon-

treal, Montreal His pre\ent work is aimed at design model\ tor commu-
nication protocols and diqtributed systems He ha\ been actibely involLed
i n the standardization of formdl description techniques tor OS1 From 1977
to 1978 he was d Visiting ProfeTsor at the Ecole Polytechnique Federale.
Lausanne, Switzerland From 1979 to 1980 he wa\ a Visiting Profe\\or i n

the Computer Sy\tems Laboratory, Stantord Uni\er \ i ty . Stanford. CA
From 1986 to 1987 he wa\ a Visiting Researcher at Sienien5. Munich

